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A B S T R A C T   

Camera-equipped Unmanned Aerial Vehicles (UAVs) are effective tools for as-built building surveys. Through a 
systematic literature review, we synthesized and categorized factors affecting the quality of UAV-based recon-
structed scenes and their associated performance evaluation metrics (e.g., accuracy and time efficiency). Their 
interrelationships were analyzed by Social Network Analysis (SNA) to identify critical factors and their impacts. 
We further quantitatively evaluated these factors and metrics through controlled experiments with a camera- 
equipped UAV and a Terrestrial Laser Scanner for an institutional building. Various flight paths, photo over-
laps, and distances to the building were tested to evaluate their impact on dimensional accuracy, time efficiency, 
and point cloud density. We demonstrated the trade-offs between the influential factors to provide insights into 
parameter selection. Additionally, a data requirements schema for UAV-based as-built 3D scene reconstruction 
was established toward standardization of data processing practices. This study could serve as a foundation for 
future research and applications of UAV-based photogrammetry for building surveys.   

1. Introduction 

Unmanned Aerial Vehicles (UAVs) have become increasingly popu-
lar in the Architecture, Engineering, and Construction (AEC) industry, 
with their utilization on project job sites nearly doubling from 20.7% in 
2015 to 43% in 2020 [35,36]. UAVs have various applications 
throughout projects' life cycles, including land surveying, logistics 
tracking, on-site monitoring, and as-built surveys during the construc-
tion phase, as well as applications for maintenance, operation, and ul-
timately, demolition during the post-construction phase [49]. Among 
these applications, as-built building surveys are widely used for doc-
umenting building information, developing digital twins, and assessing 
and planning maintenance needs. Compared with conventional manual 
as-built surveys, three-dimensional (3D) scene reconstruction provides a 
more efficient and cost-effective solution with detailed visual informa-
tion and measurements [42]. Although Terrestrial Laser Scanning (TLS) 
technology could largely reduce the surveying workload and generate a 
3D building model with high efficiency and accuracy [70], the high cost 
of professional equipment limits its wider adoption. In contrast, UAV- 
based photogrammetry through image processing is an alternative for 
automated 3D as-built surveys with the benefits of time- and cost- 

efficiency. Compared with terrestrial measurement methods, a low- 
cost camera-equipped UAV system enables the collection of large 
amounts of building images from multiple views within a short time. 
These images can later be used for the reconstruction and survey of a 3D 
building model with access to detailed visual information and mea-
surements [8,20,88]. 

With UAV-captured images and their camera position information, 
3D reconstructed scenes or 2D orthophoto mosaics can be acquired 
through processing 2D image sets with triangulation and photogram-
metric techniques such as Structure-from-Motion (SfM) [67]. To 
enhance the efficiency (e.g., time and cost) and performance (e.g., 
dimensional accuracy and point density) of the 3D reconstruction pro-
cesses, previous research efforts have studied the impact of different 
data collection and processing features. These include flight design 
features, such as flight paths, flight timing, altitude, distance to the 
target, the total number of photos, and photo overlap percentages, as 
well as ground control points (GCPs) and rocessing software tools. They 
have shown wide ranges of variations, with the photo overlap percent-
ages ranging from 35% to 95%, and the distance between UAV and 
building surface from 1 to 25 m for different building inspection appli-
cations [73]. However, existing studies have generally discussed overall 
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factors or partially evaluated the influence of specific factors on the 
performance of UAV photogrammetry. There has been a lack of sys-
tematic synthesis of the reported factors and their impacts on perfor-
mance across different studies. Therefore, this paper uses a systematic 
literature review and Social Network Analysis (SNA) to synthesize the 
influential factors, performance evaluation metrics, and their in-
terrelationships for UAV-based as-built surveys for buildings. The 
experimental quantification of how these identified factors influence the 
quality of the reconstructed scenes was also carried out to reveal their 
quantitative relationship and build a foundation for the application of 
automated UAV-based building surveys. As such, with the aim of 
investigating these factors interrelationships, this study has sought to 
answer the following questions:  

• What are the factors that impact the performance (i.e., accuracy- 
efficiency trade-off) of UAV-based photogrammetry for the recon-
struction of 3D building models?  

• What is the quantified impact of these factors on the quality of 
reconstructed models? 

To answer these questions, we first identified the important factors 
and indicators for performance evaluation through a systematic litera-
ture review (SLR) and synthesis. For selected factors that were identified 
as important in previous literature, controlled experiments were con-
ducted to quantify their accuracy-efficiency trade-off. Therefore, this 
study provides a comprehensive review of the influential factors and 
their quantified impact on the as-built survey process and outcome with 
a case study. The paper is organized into several sections: Section 2 
provides an overall review of previous studies related to UAV applica-
tions in construction surveying and 3D reconstruction. Section 3 in-
troduces the methodology of this study, which includes the SLR and the 
controlled experiments on a real-world building. Section 4 presents the 
results of the SLR, which identifies the critical influential factors, as well 
as metrics for performance evaluation. Section 5 discusses the case study 
including the selected influential factors and performance indicators, 
the controlled experiments, and the descriptive statistical analysis. 
Finally, Section 6 summarizes the key findings and limitations, and 
describes the future directions. 

2. Background 

2.1. Photogrammetry in the AEC industry 

A photogrammetric survey entails mathematical modeling through 
central projection imaging techniques to locate object points in three 
dimensions and thus form 3D reconstructed scenes based on 2D images 
[54]. In the AEC applications, photogrammetry is typically referred to as 
close-range photogrammetry, where the camera is positioned within a 
range of 1 to 300 m from the target object [14]. The dimensions of the 
target object usually range from 0.5 to 200 m with an accuracy ranging 
from 0.1 mm to 1 cm [54]. In the AEC industry, photogrammetric sur-
veys have been broadly applied in various stages of lifecycle manage-
ment. For example, during the construction phase, photogrammetry can 
be utilized to generate consecutive as-built point clouds to monitor the 
progress of a construction project. By measuring and comparing the 
dimensions from the generated point clouds and the designed 4D 
building information model (4D-BIM), construction progress monitoring 
could be conducted with higher accuracy [80,89]. Photogrammetry has 
also been adopted in operational stages to model building facades for 
surveys and inspections [66,95]. 

There are a variety of factors that can influence the performance of 
photogrammetric surveys. Terrestrial photogrammetry, a subset of 
general photogrammetry, utilizes ground-based cameras and imaging 
techniques to capture data and measure the three-dimensional infor-
mation of objects and environments [53]. It typically relies on specific 
sensing equipment and techniques tailored for ground-based data 

collection. Dai et al. [13,15] systematically reviewed the literature 
related to terrestrial photogrammetric modeling to identify influential 
factors, including camera-object distance, the number of photos, inter-
section angle, angle of incidence, and camera-related features (i.e., 
camera model, resolution, focal length, camera lens). While terrestrial 
photogrammetry has demonstrated significant potential for building 
surveys, its inherent limitations, notably the constrained field of view, 
hinder the surveying of geometric objects that are inaccessible, such as 
high-elevation building facades and roofs [75]. 

2.2. UAV applications in the AEC industry 

With advances in UAV technologies, the application of cost-effective 
UAV camera systems could augment the data acquisition processes with 
improved accessibility and efficiency. This, in particular, enhances the 
capability for surveying and monitoring building structures at higher 
elevations expanding potential applications. In addition, UAVs can also 
be applied in indoor environments for applications such as monitoring 
construction sites, surveying, and information collection [38,48,57]. As 
revealed in previous studies, UAVs have found extensive applications 
across various stages of a building's life cycle. In the construction phase, 
UAVs can be used for detecting changes and deviations from planned 
structures [33]. Furthermore, in the post-construction phase, UAVs play 
a vital role in inspecting [43,81,85], measuring [31,81], and doc-
umenting the as-built model of construction projects [2]. In addition, 
recent studies have explored the utilization of multiple UAVs for the 
collection and analysis of large-scale data about multiple buildings, 
highlighting their potential for enhancing efficiency and precision in 
large-scale urban planning and development projects [10,28,50,97]. 
Several studies have reviewed the developments and applications of 
UAVs in the AEC industry. As shown in Table 1, we have compiled and 
summarized the main findings of these review studies. Most of these 
review papers introduced the application areas in the construction in-
dustry [5,8,16,59,102]. Some of them summarized the technologies, 
benefits, and challenges of applying UAVs in different fields 
[8,21,72,99,102]. Nevertheless, limited studies have compiled and 
investigated the influential factors in the UAV-based as-built 3D recon-
struction of buildings [71,73]. 

Among all categories of UAV applications in the AEC industry, the 
focus of this study lies in the use of UAVs for as-built building surveys (i. 
e., 3D reconstructed models of buildings). Ham et al. [30] have compiled 
the related literature in this direction to summarize the workflow of UAV 
photogrammetry in building surveys as three major steps: (1) UAV- 
based data collection, (2) data processing to obtain actionable infor-
mation (e.g., point clouds and reconstructed scenes or models), and (3) 
visualization, evaluation, and communication with practitioners in the 
project. These steps have been used in our study for the categorization of 
influential factors and evaluation metrics. Although the implementation 
of UAVs has greatly improved the application of photogrammetry for 3D 
building surveys and researchers have thoroughly reviewed and cate-
gorized these applications as reflected in Table 1, few studies have 
explored the influential factors that affect the outcome of the process in 
both qualitative and quantitative ways. In practical applications, while 
numerous case studies have demonstrated successful high-quality 3D 
scene reconstructions, there remains a gap in our collective under-
standing of how variations in individual influential factors affect the 
quality of building surveys across different levels of detail [15,71]. 
Despite some factors that are more or less similar in terrestrial photo-
grammetry (e.g., the distance between the camera and targets or the 
number of photos), UAV-based photogrammetric surveys have their 
unique features that need to be further investigated (e.g., flight path and 
flight height). 

3. Research methodology 

Our methodology was divided into two components: (1) a systematic 
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literature review and synthesis and (2) an experimental case study. To 
assess the underlying factors affecting the quality of the reconstructed 
scenes, we compiled the related articles and summarized the reported 
influential factors. These articles present field studies with quantified 
assessments of 3D scenes. In the next step, we analyzed these factors to 
develop a categorization for them. To explore the reflected relationships 
between different factors, we used the analytical method of Social 
Network Analysis (SNA) to measure the centrality degrees of the factors 
that appeared in the compiled articles. This method could be used to 
identify the co-occurrence frequency of different factors in previous 
studies and visualize their interrelationships [55]. 

After identifying the characteristics of influencing factors and their 
interrelationships, a case study with controlled experiments on a uni-
versity building was conducted to quantitatively evaluate the relation-
ship between the identified important factors. The impact of three 
influencing factors (the flight path pattern, the distance between the 
UAV and the target, and the photo overlap percentage) was investigated 
by using three performance evaluation metrics including dimensional 
accuracy, point cloud density, and time efficiency. To this end, six mesh 
models of the reconstructed scenes with different settings were devel-
oped. Additionally, a terrestrial laser scanner-based (TLS-based) point 
cloud was also developed as the benchmark for performance evaluation. 
Benchmarking against the point clouds from laser scanners is a 
commonly used approach given the high accuracy of their resultant 
point clouds [4,25]. Based on the assessment of these models, we drew 
conclusions and discussed recommendations. Fig. 1 summarizes the 
methodology of our study. Details of each step have been presented in 
their corresponding results subsections. 

4. Systematic literature review/synthesis 

A Systematic Literature Review (SLR) was conducted to identify, 
select, and appraise the literature relevant to UAV-based photogram-
metry for 3D as-built surveys. Following the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [58], 
the SLR process was conducted as shown in the following steps. 

4.1. Literature search strategies 

We focused our search on articles with the subject matter at the 
intersection of UAVs, image-based 3D model reconstruction, and 
building assets. Considering that there are many alternative terms, the 
literature databases/libraries and various search keywords were used as 
follows:  

• Literature database/libraries:  
o American Society of Civil Engineers (ASCE) library.  
o Institute of Electrical and Electronics Engineers (IEEE) Xplore.  
o Web of Science (WoS).  
o Engineering Village. 

Table 1 
Key review papers of UAV applications in the AEC industry.  

References Year Main Findings 

[8] 2014  • UAV hardware, software, control methodologies, and the 
latest related technologies.  

• Opportunities and challenges of applying UAV in 1) seismic 
risk assessment, 2) transportation, 3) disaster response, 4) 
construction management, 5) surveying and mapping, and 
6) flood monitoring and assessment. 

[30] 2016 • A review of UAV-driven research on automating construc-
tion monitoring and civil infrastructure condition 
assessment. 

[19] 2017  • A value chain with stakeholders involved in UAV 
applications to outline the major trends of UAV usage in the 
industry.  

• Suggested four applications and gaps in the use of UAVs in 
1) the design phase, 2) the construction phase, and 3) the 
exploitation phase in construction. 

[57] 2017  • The potential applications for UAVs in indoor construction 
sites, their benefits, and challenges. 

[86] 2017  • Summarized four categories of UAV use in the construction 
industry: 1) photography/videography, 2) surveying, 3) 
inspections, and 4) safety/security monitoring. 

[60] 2017  • Characterized 9 applications and 10 issues reported in 
previous studies of applying UAVs in the construction 
industry 

[73] 2018  • A historical timeline of UAV technology developments.  
• A standard procedure for operating a UAV for energy audit 

missions (documenting building performance, visualizing 
heat transfer using infrared imaging, and creating digital 
models). 

[16] 2018  • Identified five Applications of UAV in the construction 
industry: 1) Project progress control, 2) Damage 
assessment, 3) Surveying, 4) Safety monitoring, 5) 3D 
modeling 

[102] 2018  • Applications of UAVs in the industry: 1) building 
inspection, 2) damage assessment, 3) site surveying, 4) 
safety inspection, 5) progress monitoring, 6) building 
maintenance, and 7) other construction applications.  

• Benefits, types, onboard sensors, and control styles of UAVs 
in construction applications. 

[5] 2019  • Categorization of UAV applications in the AEC domain: 1) 
infrastructure and structural inspection, 2) transportation, 
3) cultural heritage monitoring, 4) city and urban planning, 
5) progress monitoring, 6) post-disaster, 7) construction 
safety 

[99] 2020  • Eight potential UAV application areas and three major 
challenges were identified. The challenges include 1) legal 
and regulatory requirements, 2) features and abilities of 
UAVs, and 3) qualities and capabilities of related software. 

[21] 2020  • Four areas of applications of immersive technologies and 
two areas of applications of UAVs in the construction 
industry. For UAVs, the areas include 1) automated 
surveying, information management, and visualization, 2) 
construction inspection, monitoring, and safety 
management. 

[100] 2021  • Two key components of applications of UAV aerial images 
for three-dimensional reconstruction: 1) image-based 
three-dimensional reconstruction technology, 2) UAV path 
planning technology. 

[94] 2021  • Five main UAV application fields: 1) Mapping and 3D 
modeling, 2) Construction monitoring, 3) Structural 
damage detection, 4) Energy efficiency prospection, 5) 
Urban remote sensing. 

[72] 2022  • Seven application areas of integrating UAV with Digital 
Twins: 1) progress monitoring, 2) historic building 
conservation, 3) information management, 4) construction 
safety, 5) construction education, 6) structural and 
infrastructure inspection, 7) transportation. Four 
technology trends: 1) automated progress monitoring, 2) 
automated UAV inspection planning, 3) real-time video 
streaming, 4) parametric model development of historic 
buildings 

[65] 2023  • Five main dimensions of UAV application in the AEC 
industry: 1) inspections and mapping, 2) data processing 
and management, 3) safety and health management, 4)  

Table 1 (continued ) 

References Year Main Findings 

challenges and risks of drone use, 5) training aid for site 
personnel and students  

• Market review and comparison among different UAV types  
• Future directions of research: education, total quality 

management, safety risk related to drone use, human 
factors and their impact, regulatory interventions. 

[59] 2023  • Two categories of UAV applications in construction 
management: 1) UAV uses including algorithms, 
applications, operations, framework, and training, 2) 
Construction uses including inspection, surveying, safety, 
and monitoring.  
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• Since UAV systems and technologies are relatively new applications 
in the fields of buildings and construction, we concentrated on 
studies published in the past decade (2010− 2023).  

• Search terms  
o Terms regarding UAV:  

▪ “UAV” OR “UAS” OR “drone” OR “unmanned aerial 
vehicle” OR “MAV”;  

o Terms regarding image-based 3D scene reconstruction:  
▪ “image” OR “photo” AND  
▪ “model reconstruction” OR “3D reconstruction” OR 

“photogrammetry”;  

o Terms regarding building assets:  
▪ “building” OR “architecture”. 

After the compilation, the studies were filtered by inclusion and 
exclusion criteria listed below:  

• Inclusion criteria:  
o include studies on real-world case studies or experimental 

practices  
o include studies that present the complete process of UAV-based 3D 

scene reconstruction 

Fig. 1. The methodology of identifying the influential factors in developing 3D reconstructed scenes and their quantified impact.  

Fig. 2. Flowchart of the systematic literature review process (PRISMA flow diagram).  
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• Exclusion criteria:  
o Studies that are not in the domain of buildings (e.g., land survey)  
o Studies that do not include real-world case studies or experimental 

practices with a complete process of UAV-based 3D scene 
reconstruction 

o Studies that are not using UAV-captured RGB images for photo-
grammetry (e.g., Lidar-based and UGV-based) 

Fig. 2 illustrates the detailed procedure of the employed SLR using 
PRISMA guidelines. A total of 761 articles were identified through the 
aforementioned search strategy. These articles were then synthesized 
into 420 articles after removing duplicates and other publication forms 
(e.g., book chapters and articles in press). Then, the title, abstract, and 
keywords of 420 articles were further screened using the specified in-
clusion and exclusion criteria that resulted in the selection of 84 articles. 

Table 2 
Specification of the studies described in the selected articles related to UAV-based photogrammetric as-built surveys for buildings.  

Reference Year Building Type UAV & Camera Model (Resolution) Mentioned Influential Factors Mentioned Performance 
Evaluation Metrics 

[34] 2010 Commercial 
Building 

UAV: MD4–200 
Camera: PENTAX Optio A40 (12MP) 

Flight path, GCPs*, Photo overlap, Number of 
photos, Processing software 

Number of points, Point cloud 
accuracy**, Time efficiency 

[45] 2011 Commercial 
Building 

UAV: (1) AscTec Falcon 8 (14MP), (2) swinglet 
CAM (12MP) 

Flight path, Altitude, Photo Overlap, Number of 
photos, Processing software 

Number of points 

[26] 2012 School Building UAV: FKC-1 
Camera: Four-combined camera 

GCPs, Photo overlap Scale of mapping 

[91] 2013 Cultural 
Heritage 

UAV: DJI Phantom 
Camera: Canon A180 camera (16MP) 

Flight path, GCPs, Processing software No performance evaluation 

[7] 2014 School Building UAV: 3DR IRIS Quadcopter 
Camera: GoPro 3 (12MP) 

Flight path, GCPs, Photo overlap Dimensional accuracy 

[25] 2014 School Building UAV: Oben octocopter Flight path, Altitude, GCPs, Photo overlap, 
Number of photos, Processing software 

Point cloud accuracy 

[18] 2014 Commercial 
Building 

UAV: DJI Mavic Pro with a camera (12MP) Flight path, Altitude, Distance, Photo overlap, 
Number of photos, Processing software 

No performance evaluation 

[12] 2015 School Building UAV: AscTech Falcon octocopter 
Camera: Sony NEX-5 N 

Number of photos, Processing software Point cloud accuracy 

[27] 2015 School Building UAV: Asctec Falcon 
Camera: Camera with 10MP resolution 

Processing software Façade resolution in pixel 

[29] 2015 Cultural 
Heritage 

UAV: MD4–1000 
Camera: Olympus PEN E- P2 (12MP) 

Flight path, Distance, GCPs, Number of photos, 
Processing software 

Point cloud accuracy 

[98] 2015 Residential 
Building 

UAV: DJI Phantom 2 Flight path, Altitude, Number of photos, 
Processing software 

No performance evaluation 

[93] 2015 Residential 
Building 

VTOL (vertical take-off and landing) UAV Number of photos, Processing software Point cloud density 

[4] 2016 Cultural 
Heritage 

UAV: Mikrokopter 
Camera: Sony ILCE-5100 (24MP) 

Flight path, Altitude, GCPs, Processing software Point cloud accuracy, Number of 
points 

[61] 2017 Cultural 
Heritage 

UAV: (1) Sensefly Albris 
(2) DJI Phantom 3 Professional (38MP) 

Distance, GCPs, Number of photos, Processing 
software 

Point cloud accuracy 

[92] 2017 Residential 
Building 

UAV: FlyNovex 
Camera: Sony Alfa 6000 (24MP) 

Flight path, Altitude, GCPs, Photo overlap, 
Number of photos, Processing software 

Dimensional accuracy, Point 
cloud accuracy 

[101] 2018 Stadium 
(school) 

UAV: DJI F550 
Camera: GoPro Hero 3 Plus 

Flight path, Altitude, Number of photos, 
Processing software 

Point cloud accuracy, Number of 
points, Time efficiency 

[82] 2018 Cultural 
Heritage 

UAV: DJI Phantom 4 (38MP) Flight path, GCPs, Number of photos, Processing 
software, Point deviation 

Point cloud accuracy 

[44] 2019 Residential 
Building 

UAV: DJI Mavic Pro 2 (12MP) Flight path, Altitude, Distance, Number of photos, 
Processing software 

Point cloud accuracy 

[37] 2020 Cultural 
Heritage 

UAV: DJI Inspire 1 
Camera: Zenmuse X5R (16MP) 

Altitude, Image shooting rate, Flight speed, 
Camera angle, Number of photos, Processing 
software, 

Point cloud accuracy 

[56] 2020 Cultural 
Heritage 

UAV: DJI Matrice 600 Pro 
Camera: DJI Zenmuse X5 (16MP) 

Flight path, GCPs, Altitude, Photo overlap, 
Number of photos, Processing software 

Dimensional accuracy, Point 
cloud accuracy 

[6] 2020 Cultural 
Heritage 

UAV: DJI Phantom Pro 4 with camera (20MP); 
Corby Drone CX012 with camera (0.3MP) 

GCPs, Altitude, Photo overlap, Number of photos, 
Processing software 

Point cloud accuracy 

[53] 2020 Cultural 
Heritage 

UAV: DJI Mavic Pro 
Camera: FC 220 (12MP) 

GCPs, Altitude, Distance, Number of photos, 
Processing software 

Point cloud accuracy 

[51] 2021 School Building UAV: DJI Phantom Pro 4 with a camera 
(20MP) 

Flight path, Distance, Photo overlap, Number of 
photos, Processing software 

Dimensional accuracy 

[77] 2021 School Building UAV: DJI Mavic 
Pro with a camera (12MP) 

Flight path, Altitude, Photo overlap, Processing 
software 

Dimensional accuracy 

[62] 2022 Public Building UAV type not specified 
Camera: Model EP3 (12MP) 

Flight altitude, Photo overlap, Number of photos, 
Processing software 

Point cloud density, Point cloud 
accuracy 

[32] 2022 School Building UAV: DJI phantom 4 PRO with a camera 
(20MP) 

Flight path, Altitude, Photo overlap, Number of 
photos, Processing software 

Point cloud accuracy 

[78] 2022 Stadium 
(public) 

UAV: DJI Phantom 3 with a camera (12MP) GCPs, Processing software Dimensional accuracy 

[87] 2022 School Building UAV: Autel Evo Nano with a camera (48MP) Flight path, Altitude, Camera angle, Number of 
photos, Processing software 

Point cloud density 

[79] 2023 Residential 
Building 

UAV: DJI Phantom 4 Pro with a camera 
(20MP) 

GCPs, Flight path, Altitude, Distance, Photo 
overlap, Number of photos, Processing software 

Point cloud accuracy 

[90] 2023 Cultural 
Heritage 

UAV: DJI 
Matrice 300 RTK 
Camera: DJI Zenmuse P1 camera (45MP) 

GCPs, Flight path, Altitude, Number of photos, 
Processing software 

Point cloud accuracy  

* GCP: Ground Control Points. 
** Cloud-cloud distance based on the reference cloud (LiDAR). 
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After conducting a full-text review of these articles, we extracted a 
subset of 30 articles that introduced factors used in their UAV-based 
photogrammetry, and were thus used for the detailed quantitative 
analysis. 

4.2. Literature analysis 

The details of the selected 30 articles are listed in Table 2, which 
summarizes the specifications of each study including the target build-
ing type, equipment setup, and reported factors in their experimental 
design. As shown in this table, previous studies have discussed various 
influential factors for different scenes. We used these reported factors in 
developing a qualitative categorization and a quantitative relationship 
analysis in the following sections. 

4.2.1. Categorization of influential factors 
The process of using UAVs for photogrammetric building surveys 

mainly includes the equipment setup (e.g., UAV type, camera resolution, 
etc.), planning of in-flight data collection, and post-flight processing of 
collected imagery data [23,73]. Upon review of the articles in Table 2, 
we clustered the parameters of interest that were discussed in each 
article. The parameters were respectively categorized into (1) influential 
factors in the process of 3D scene reconstruction and (2) performance 
evaluation metrics. Fig. 3 illustrates the mapping of all the parameters of 
interest. The influential factors can be further grouped into factors 
related to data collection versus data processing steps. The performance 
evaluation metrics could be associated with accuracy, time efficiency, 
and point cloud characteristics. Table 3 shows the range of influential 
factors reported in the previous studies. These ranges were identified 
across multiple papers as individual studies have not specified the 
effective ranges. In the following subsections, further details are 
presented. 

4.2.1.1. Data collection. In the UAV-based data collection processes, 
multiple factors need to be configured before take-offs, such as the 
equipment setup and the flight path design. These factors must be set 
considering the constraints imposed by the UAVs and their cameras, 
battery life, surveying conditions, and legal regulations [52]. In terms of 
hardware settings, it can be seen from Table 3, that DJI UAVs are 

commonly used multirotor UAVs in photogrammetry. Although, in the 
literature, there is no clear reported linkage between the resolution or 
the type of the UAV-attached camera and the quality of the recon-
structed scenes, a study in terrestrial photogrammetry indicated that the 
average error is reduced by 0.83 cm (11.2%) per 1 MP resolution in-
crease [15], which can be a reference to the effect of the camera reso-
lution for UAV-based photogrammetry as well. 

Flight Design: The influential factors in designing a flight include 
image capturing configurations, camera position, and ground control 
points. In the image-capturing configurations, the flight path pattern is 
the most fundamental setting. There are three commonly used patterns 
for flight path design in building surveys, which are Strip Path 
[4,34,92], Polygon Path [18,25,44,91,98], and Circle Path [7,45] pat-
terns. As shown in Fig. 4, the strip path pattern means flying a UAV in 
strips with a zig-zag pattern across the area of interest [24,46,79]. The 
strip path could be further divided into horizontal (Fig. 4. a) and vertical 
(Fig. 4. b) paths. Polygon path patterns (Fig. 4. c) set waypoints sur-
rounding the survey target, and the shape of the close-loop generated 
from the path varies according to the shape of the building envelope, 
which in most cases are rectangular or polygon shapes [7,18,98]. The 
circle path pattern (Fig. 4. d) is similar to the polygon pattern because 
both patterns collect data surrounding the target, with just the shape of 
the path being different [4,11]. 

Some studies have combined both the strip path and the polygon 
path, creating a camera network to capture all angles of buildings 
[29,82,101]. For example, in the study by Grenzdörffer et al. [29], the 
authors combined the strip path pattern and the circle path pattern to 
acquire images from a network of more dense camera positions for a 
cultural heritage monument's main structure. A similar approach was 
also adopted by Tran et al., in which a combination of strip and circle 
path patterns was adopted for the data collection of a school building 
[87]. Apart from manual flight path design, previous studies have also 
explored various methods for automatic flight path planning. Tan et al. 
addressed the UAV coverage path planning problem by employing a 
genetic algorithm (GA) to minimize the UAV flight length while 
ensuring a comprehensive and high-quality image data collection [84]. 
They also introduced a “global-local” adaptive inspection method inte-
grating BIM and wide-angle camera technology for dynamic UAV flight 
path adjustment, enhancing efficiency, precision, and cost-effectiveness 

Fig. 3. Categorization of factors and evaluation metrics in UAV-based photogrammetric as-built survey for buildings.  
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[85]. In addition to single-UAV flight path planning, previous studies 
have also investigated a multi-UAV path planning approach for efficient 
3D reconstruction of post-disaster buildings, balancing flight distance 
and time while avoiding obstacles [63]. 

Flight planning also includes planning the photo overlaps for robust 
data collection and the efficiency of the post-flight processing [73]. 
Photo overlap percentages were reported in ranges from 40% to about 
90% [7,34] (Table 3). We did not find a benchmark study of this factor 
while it has a significant connection with the flight path pattern, and all 
previous studies have set specific photo overlap percentages for each 
survey target. The number of overlapping photos has already been 
identified as a critical factor in terrestrial photogrammetric modeling 
[15]. However, the total number of photos in the 3D reconstruction of 
buildings can considerably vary depending on the building type, survey 
objectives, and level of detail requirements. For example, Djimantoro 
and Suhardjanto [18] successfully transformed only 27 images into a 
reconstructed scene of a commercial project for urban planning, while 
Murtiyoso, et al. [61] used 2755 images for information documentation 

of a historical building. For this reason, instead of the total number of 
photos, the photo overlap percentages would be a more suitable factor 
for establishing standards in future studies. 

For the camera position, researchers have investigated the relative 
locations of UAVs during data collection, which is represented by the 
altitude (vertical distance) and the distance (horizontal distance) be-
tween UAVs and the respective target surfaces. Adopting the presenta-
tion style of summarizing the cases of UAV applications by Rakha and 
Gorodetsky [73], Fig. 5 demonstrated various vertical and horizontal 
distances between UAVs and the target from the collected articles. Based 
on our observations, the altitude varies from 6 m to 100 m depending on 
the target buildings. The distance may also be adjusted according to the 
data collection objectives. The distance between the camera and the 
object determines the ground sampling distance (GSD), which is the 
distance between the centers of two adjacent pixels in an image. The 
building surveys with requirements for higher levels of detail need low 
GSD and shorter distances between the UAV and the target. For building 
inspection or damage detection, the typical distance has been found to 

Table 3 
Range of influential factors for 3D scene reconstruction from previous literature.  

Categorization Factors Cases from Literature 

Data Collection Equipment Setup UAV Characteristics DJI series products (Inspire, Mavic [18,44,53,77], Phantom [6,32,78,82,91], Matrice [90]) 
MD4 series [29,34] 
AscTech Falcon [12,27,45] 
FlyNovex [92] 
Autel Evo Nano [87] 

Camera Characteristics Different Cameras with resolutions from 10Mp [27] to 48 MP [87] 
Flight Design Flight Path Pattern Polygon Pattern [18,25,44,51,77,91,98] 

Circle Pattern [7,45] 
Strip Pattern [4,34,92] 
Mixed Pattern [29,82,87,101] 

Photo Overlap 40%–50% [7] 
60%–80% [25,45] 
70%–80% [18,56] 
86% [34] 

Total Number of Photos Varying from 27 [18] to 2755 [61] 
3D Distance from Target Horizontal: 5 m [44] – 100 m [18] 

Vertical: 20 m [4] – 100 m [18] 
Oblique Angle of Camera Varying from 15◦ to 45◦ [4,17,87,92] 
Ground Control Points Varying from 4 [92] to 117 [29] 

Data Processing Software Applications Open-source Packages PMVS [45] 
Bundler [12] 
MicMac [4,61] 

Self-developed Algorithm/Tools Visual SfM [34] 
MAVMAP [27] 
Interactive SfM [12] 

Commercial Tools Agisoft Photoscan (now Metashape) [4,17,25,29,53,56,61,79,82,92,98] 
Pix4D [4,6,17,37,44,45,61,62,78,79,92,93] 
Recap Photo [18] 
3Df Zephyr [4] 
SURE [4,29] 
PhotoModeler [34,61,92] 
Drone Deploy [18]  

Fig. 4. Typical pre-flight path planning (a. Strip Pattern (horizontal), b. Strip Pattern (vertical), c. Polygon Pattern, d. Circle Pattern).  
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be smaller between 1 and 5 m [9,83]. For example, the distance between 
camera and the target can be between 2 and 5 m in the assessment of 
post-disaster areas (e.g., post-earthquake building evaluation) [1,47], or 
less than 1 m in the detection of façade cracks [22]. For 3D recon-
struction of buildings, larger distances have been reported, typically 
more than 10 m, e.g. between 15 and 20 m in the reconstruction of 
cultural heritages [29]. The oblique angle of the camera is normally set 
at 45 degrees [4,92], but the specific angle should be determined by 
other factors, such as 3D distances (horizontal and vertical distances) 
between the UAV and the target [4]. One previous study has identified 
that a combination of UAV images taken at 30◦ and 90◦ angles is optimal 
for generating a sufficient number of matching points with high preci-
sion [68]. 

The last factor in data collection is Ground Control Points (GCPs), 
which are used to guide the flight of the UAVs in covering the areas of 
interest. The setting of GCPs is for geo-referencing in data collection and 
data processing. Agüera-Vega, et al. [3] demonstrated the influence of 
the number of GCPs on the accuracy of UAV-based products through 
field studies and stated that both the horizontal and vertical accuracy 
increases with the increasing number of GCPs. A previous study has 
identified that the number and the distribution of the GCPs can signif-
icantly affect the computational cost and the quality of the reconstructed 
point cloud model [79]. Nevertheless, similar to the number of photos, 
the settings of GCPs and the number of GCPs can vary across different 
buildings, so it may not be suitable to set the number of GCPs as a 
benchmark feature to be applied for general applications. 

The influential factors in data collection may be cross-correlated and 
thus sometimes the modification of one factor would affect the other 
factors. For example, the change of photo overlap would affect the total 
number of photos and the time effiency related to the data collection 
amd processing. Previous studies have not explored the influence of 
changing these factors with the consideration of cross-correlation, 
which is what we have investigated in our case study. Details of the 
findings will follow in the case study section. 

4.2.1.2. Processing methods and tools. The processing of UAV-collected 

data is a critical step in building surveys. As indicated in Fig. 3 and 
Table 3, the processing methods and tools in previous studies can be 
divided into three groups: 1) self-developed algorithms/tools, 2) open- 
source packages, and 3) commercial tools. Some studies have focused 
on developing algorithmic frameworks to create 3D reconstructed 
scenes. The Scale Invariant Feature Transform (SIFT) for feature 
matching and interactive Structure from Motion (SfM) techniques for 
image transformation [12,64] are among the core algorithmic compo-
nents for this purpose. Others utilized open-source packages like PMVS 
[45], Bundler [12], and MicMac [4,61] for image processing. However, 
most of the previous studies have utilized well-established commercial 
software applications, such as Agisoft Photoscan (now Metashape), 
Pix4D, or 3Df Zephyr for data processing. It can be seen from Table 3 
that Agisoft Photoscan and Pix4D are the two most frequently used 
commercial tools in the compiled articles. 

Some studies have further compared these commercial tools to 
identify the ones with better performance. As presented in Table 4, 
previous studies [4,17,61,79,92] have investigated the accuracy of UAV- 
based building surveys by adjusting critical factors such as data pro-
cessing software. By comparing the point clouds generated from 
terrestrial laser scanner (TLS) and the point clouds generated from UAV 
images using different data processing software tools, they proved that 
all of the tested software tools could produce building point clouds with 
high quality (less than 0.05 m difference between TLS and image-based 
point clouds). Based on these comparisons, Agisoft Photoscan and Pix4D 
have been shown to have better overall model accuracy among the 
commonly used commercial tools [17,79]. 

4.2.2. Categorization of performance evaluation metrics 
For performance evaluation metrics, accuracy, time efficiency, and 

point cloud characteristics (as shown in Table 5) have been commonly 
used in previous studies. To evaluate the quality of 3D reconstructed 
scenes, measurements of these as-built scenes need to be compared with 
actual real-world data. Accuracy reflects the reliability of photogram-
metric measurements in applications. As shown in Table 5, many studies 
utilized comparisons of point clouds obtained from the image-based 

Fig. 5. The vertical and horizontal distance between UAVs and the building targets in the compiled literature.  

T. He et al.                                                                                                                                                                                                                                       



Automation in Construction 161 (2024) 105323

9

models and the point clouds generated from Terrestrial Laser Scanning 
(TLS) (as the ground truth data). For example, Aicardi et al. [4] evalu-
ated the quality of point clouds by calculating the minimal, maximal, 
and average point distances and compared them with TLS-based point 
clouds. Some studies have also used dimensional accuracy as an evalu-
ation metric. Vacca et al. [92] evaluated the dimensional accuracy of 
models by comparing the measurements of key dimensions between 
UAV-based and TLS-based point clouds. Time efficiency is also a per-
formance indicator for UAV photogrammetric surveys. The on-site data 
collection duration and the post-flight model processing time should be 
recorded as the reference for evaluation of the time efficiency [15]. As 
an example, Zheng et al. [101] have demonstrated that the usage of 
multiple UAVs can dramatically decrease the data collection time from 
42 min to 15 min. Another factor that can affect the time efficiency is the 
control of the UAV during on-site data collection. Compared with 
manual-flying control, autonomous control with pre-programmed 
routes is much faster and more efficient. As the third group of metrics, 
the total number of points in a model and the density of the point clouds 
have been also considered for performance evaluation. A denser point 
cloud could provide information with a higher level of detail [25]. 

4.3. Interrelationships between factors 

To analyze the interrelationships between the above-mentioned pa-
rameters (influential factors in 3D scene reconstruction and perfor-
mance evaluation metrics), as noted, we utilized the Social Network 
Analysis (SNA) method. SNA enables the analysis and visualization of 
interrelationships between multiple entities in a network using graph 
theory [55]. For each reviewed article (case) in the selected pool from 
Table 2, the terms, associated with our parameters of interest, that 
appeared in each article were counted, while the non-existing terms 

were set to zero. A two-mode (bi-partite) network, which quantifies the 
occurrence of each parameter in each paper, was generated. The two- 
mode network can then be transformed into a one-mode network for 
the studied parameters to quantify the co-occurrence frequency among 
all parameters. The heatmap shown in Fig. 6 presents the calculated 
probability of the co-occurrence for each set of two factors in the 
network. The values in each cell represent the frequency of co- 
occurrence of two factors in the reviewed literature. The higher the 
value, the higher the co-occurrence frequency of the two factors in 
previous studies. 

The parameters co-occurrence matrix was used to measure the cen-
trality of each parameter (factor) using the software Netminer [76]. As 
shown in Fig. 7, the size of each node in the SNA network represents the 
degree of centrality of each factor, which identifies the most important 
or influential factors. It can be observed that the most influential factors 
during the data collection phase (blue nodes) show very high degrees of 
centrality, especially the factors representing equipment setup config-
urations such as flight path, and the total number of photos. For post- 
flight data processing factors (green nodes), commercial software tools 
were most commonly used. Performance evaluation metrics (red nodes) 
of accuracy and point cloud quality were broadly investigated to eval-
uate the performance of 3D model reconstruction. Meanwhile, the 
thickness of each link in the SNA network represents the frequency of co- 
occurrence of two correlated factors in the reviewed literature. The 
thicker the link, the higher the frequency of co-occurrence between the 
two factors. The equipment setup, flight path, distance, number of 
photos, and commercial software/tools are the important factors that 
have been frequently mentioned when studying the accuracy perfor-
mance of the reconstructed models. For the point cloud quality, equip-
ment setup, flight path, distance, number of GCPs, and the number of 
photos were mostly related. However, time efficiency was seldom 
mentioned in the collected studies because it was seldom used in eval-
uations. Based on the SNA analysis, it can be concluded that the 
equipment setup, flight path patterns, the 3D (horizontal and vertical) 
distance between the UAV and the target, the overlap between photos, 
the number of photos, and the choice of the data processing commercial 
software may play a critical role in the quality of the 3D reconstructed 
as-built scenes. 

The majority of the selected studies have investigated the 3D scene 
reconstruction with specific pre-flight settings and performance evalu-
ation metrics, which makes it difficult to evaluate the impact of the 
influential factor ranges on the outcome. Although we sought to quan-
tify the impact of influential factors on performance indicators using the 
selected literature, the numeric patterns for each parameter (e.g., photo 
overlap percentages, photo numbers, and distances) are difficult to be 
synthesized and analyzed. For this reason, in Section 5 we designed a 
case study to investigate the impact of three identified important factors 
(i.e., flight path pattern, the distance between the UAV and the target, 
and photo overlap) on three frequently used performance measurements 
including dimensional accuracy, time efficiency, and point cloud 
quality. 

Table 4 
Performance evaluation of UAV-based photogrammetric image processing by different commercial software tools in previous literature.  

Performance Evaluation Commercial Tools 

Agisoft Photo 
Scan 

Pix4D 3D 
Zephyr 

MicMac SURE Context 
Capture 

Photo 
Modeler 

Visual 
SfM 

3Dsurvey Ref. 

Point cloud mean difference compared with 
TLS data (mm) 

3 4 5 6 25 4 – 5 – [4] 
0 2 – 2 – – 4 – – [61] 
8 5 – – – – – – – [92] 

Maximum dimensional difference compared 
with TLS data (m) 

0.01 0.03 – – – – – – 0.06 [17]  

Table 5 
Performance evaluation metrics for UAV-based photogrammetric 3D scene 
reconstruction in previous literature.  

Categorization Evaluation Factor References 

Accuracy  • Point cloud 
(image) to 
point cloud 
(TLS) 
comparison 
(point cloud 
accuracy) 

[4,7,12,17,25,29,34,53,56,61,79,82,92,101]  

• Dimensional 
accuracy 

[7,17,37,78,79,92] 

Time 
Efficiency  

• Data collection 
runtime 

[101]  

• Data 
processing 
runtime 

[12,34,101] 

Point Clouds  • Number of 
points in the 
model 

[4,25,27,29,34,45,92,101]  

• Point cloud 
density 

[44,62,92]  
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5. Case study 

5.1. Design of experiment for factor assessment study 

For the case study of factor assessment, we selected a mixed-use 
building on Virginia Tech's campus as the target object. The building 
has a regular cuboid shape, and the overall dimensions of the building 
are 37 m × 17.5 m × 20 m (length x width x height). For equipment 

setup, considering their wide application in academic research and the 
market penetration of DJI products, we chose a DJI Mavic Mini drone 
equipped with a 12 MP camera for our experiments. The comparison of 
different camera resolutions was not conducted in this case study as 
previous studies have already identified the influence of camera reso-
lution on the photogrammetry outcome [15]. Several data-processing 
software tools have also been utilized in previous studies [4]. Through 
a comparison of reported quality from various software solutions in the 

Fig. 6. The heatmap of the co-appearance probability of the identified factors in the compiled literature.  

Fig. 7. Degree centrality of and potential interrelationships between different identified parameters.  
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literature (shown in Table 4), Agisoft Photoscan (now Metashape) was 
selected for processing. We collected the data on cloudy days with an 
overcast sky and wind speed in the range of 3–6 km/h to mitigate the 
effects of interfering environmental factors. The following ranges of 
factors were used in our data collection:  

• Flight path: we set three flight path types for the building survey, 
consisting of a horizontal strip path pattern, a polygon path pattern, 
and a circle path pattern (Fig. 8. a-d, e, and f.)  

• Horizontal distance: A close distance of 15 m and a long distance of 30 
m were used (Fig. 8. a, d). For polygon and circle path patterns, the 
distance values were higher (at 30–50 m).  

• Vertical distance: The altitude of flight paths above the top of the 
building was set as 30 m, which was 10 m above the roof of the 
building.  

• Photo overlap percentages: 80%, 60%, and 40% were used (Fig. 8. a, b, 
c). 

Apart from using the collected UAV-based data for 3D reconstruc-
tion, a terrestrial laser scanner (TLS) was also utilized to create point 
clouds of the building as a baseline for performance evaluations. Pre-
vious studies have broadly utilized TLS-based point clouds and models 
as the benchmark for model evaluation [4,61,92], and it has been uni-
versally acknowledged that laser scanners can be used to rapidly collect 
data with high accuracy. A FARO Focus laser scanner was utilized with 
the predefined scan profiles of “Outdoor HDR”, the resolution of 1/8, 
and the quality of “4×”. The accompanied FARO SCENE software was 
used for laser scanner data processing. Three stations on each side of the 
building (12 stations in total) were set for laser scanning (Fig. 9), and the 
model performance was evaluated following the same criteria for the 
UAV-based models. 

Upon developing the 3D as-built point clouds, the large-scale 
building dimensions (i.e., building length, width, and height) and 
selected detailed dimensions (e.g., the width of a window, the height of a 
door) were measured and compared with the dimensions of as-built 

drawings of the building (ground truth data). Errors and error rates 
were calculated to measure the dimensional accuracy. To evaluate the 
point cloud quality, the number of points in the entire point cloud and 
the number of points on different surfaces were measured. During the 
data collection and post-processing, the time needed for data collection 
and processing was recorded for time efficiency comparisons. 

5.2. Findings from the case study 

During flight planning, we utilized UgCS, which is a commercial 
software tool with various UAV toolsets for land surveying and indus-
trial inspections. In consideration of safety issues such as avoiding sur-
rounding buildings and pedestrians, we identified reference points for 
the building and then collected data with manual control. Therefore, 
while we set the photo overlap as a fixed value in the design, the actual 
photo overlap may vary by ±5% around the set values as shown in 
Table 6. Following data collection, we developed 3D reconstructed 
scenes in the form of point clouds and built mesh models of the building 
with Agisoft Photoscan software. In the remainder of the text, we also 
refer to these as-built scenes as models. 

As shown in Table 6, seven 3D models with different factor config-
urations were built to compare the influence of various factors. Fig. 10 
shows the oblique view of these models. These visualizations show clear 
quality differences between the models. Among all cases, six proper 
models were developed, while for model c (Fig. 10.c) the images were 
not properly aligned to successfully form the complete building mesh 
model. For model c, 60 photos were collected as the original setting, 
while only 33 of them were properly aligned by the software despite 
different rounds of data collection. Additionally, as the laser scanner 
only collected terrestrial data, the top surface was not modeled in the 
TLS-based model (Fig. 10. g) compared with other UAV-based models 
with sufficient information on the building's top surface. Apart from 
that, there are also other differences among these seven models. Further 
quantitative comparisons have been discussed in the following 
subsections. 

Fig. 8. Pre-flight path planning for the case study building (a. Strip Pattern (80% photo overlap), b. Strip Pattern (60% photo overlap), c. Strip Pattern (40% photo 
overlap), d. Strip Pattern (30 m), e. Polygon Pattern, f. Circle Pattern). 
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5.2.1. Accuracy analysis 
We imported the reconstructed 3D models from Photoscan into 

Autodesk Revit to measure the dimensions of the 3D scenes. For each 
model, we collected six major dimensions such as the length, width, and 
height of the building (Fig. 11. a), and extracted six detailed dimensions, 
such as the width and height from a window on the east side wall and a 
door of the main entrance in the building (Fig. 11. b). These measure-
ments of the reconstructed 3D models were then compared with the 
ground truth dimensions to evaluate the accuracy of the reconstructed 
3D models. The accuracy analysis was conducted by calculating the 
average absolute error, average error rate, and standard deviation of 
these measurements. 

Table 7 presents the results of the dimensional accuracy assessments. 
Note that all values in the table are mean values of the related items. The 
average absolute errors and error rates are the mean values calculated 
from the absolute errors and error rates of measured dimensions, 
respectively. The observations from Table 7 have been summarized 
below and the error rate comparison has been presented in Fig. 12. 

As shown in Fig. 12, the strip path pattern (Table 7. a) demonstrates 
superior performance compared with the polygon path (Table 7. e) and 
the circle path (Table 7. f) patterns, particularly in measuring detailed 
dimensions, where the average error rate of all four strip path models is 

around 1%, while the average error rate of the other two path types 
(polygon and circle) are as high as 6%. As expected, the decrease in the 
photo overlap leads to a decrease in dimensional accuracy. When 
assessing all dimensions, the error, and the standard deviation gradually 
increase as the photo overlap decreases from 80% to 40% (Table 7. a, b, 
and c). Compared with the model generated from the laser scanner 
(Table 7. g), UAV-based models exhibit a considerably higher standard 
deviation of the measured absolute errors. In Fig. 12, when considering 
the error rate, the small gap between the UAV-based (strip pattern with 
80% photo overlap) model and the TLS-based model indicates the high 
accuracy that the UAV-based models can reach. 

Table 7 also shows that the impact of the change in photo overlap on 
the major dimensions is larger than its impact on detailed dimensions. 
By comparing the variations between 80% and 40% photo overlaps, we 
can see that the increase in the error rates of the detailed dimensions is 
smaller than the increase of error rates in major dimensions as the photo 
overlap decreases. The effect of changing the distance between the UAV 
and the building facade is relatively less considerable than that of the 
photo overlap. When comparing the impact of distance and photo 
overlap, the increase of error rate between the model with a 15-m 
(Table 7. a) distance and the model with a 30-m distance (Table 7. d) 
(0.08%) is less than the difference between model built with 80% photo 
overlap (Table 7. a) and the model built with 60% photo overlap 
(Table 7. b) (0.15%). 

5.2.2. Point clouds (model) quality analysis 
Based on performance evaluations reported in previous studies 

[4,18,24,58], we defined the total number of points in the reconstructed 
scenes and the density of points as reference metrics for quality assess-
ments. To calculate point cloud density, we segmented the point cloud 
into three surfaces (South, West, and Top) and two detailed components 
(a Window and Entrance Door) as presented in Table 8. The point cloud 
density was calculated based on the number of points in the related 
facades. The density of the top surface is higher than the others since the 
top surface also includes components, such as building systems and 
parapet walls. The point cloud density of the windows and doors (con-
taining large portions of glass) is generally lower than the other parts of 
the building surfaces (containing concrete or steel material). 

As presented in Table 8 and Fig. 13, with the same photo overlap 
(80%), the number of points in the scenes from strip patterns (Table 8. a) 

Fig. 9. Terrestrial laser scanner data collection stations (12 stations in total).  

Table 6 
Seven 3D as-built reconstructed scenes and their mesh models with various 
factor settings.  

Models Flight Path Photo 
Overlap 

Horizontal 
Distance (meters) 

Number of 
Photos 

a (Strip – 
80% -15) 

Strip 
Pattern 

80% (75%– 
85%) 

15 240 

b (Strip – 
60% -15) 

Strip 
Pattern 

60% (55%– 
65%) 

15 115 

c (Strip – 40% 
-15) 

Strip 
Pattern 

40% (35%– 
45%) 

15 60 (33 
aligned) 

d (Strip – 
80% -30) 

Strip 
Pattern 

80% (75%– 
85%) 

30 82 

e (Polygon – 
80%) 

Polygon 
Pattern 

80% (75%– 
85%) 

20–30 60 

f (Circle – 
80%) 

Circle 
Pattern 

80% (75%– 
85%) 

40–50 82 

g (Laser 
Scanner) 

N/A N/A 15 N/A  
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is larger than the number of points in those from polygon patterns 
(Table 8. e) and the circle pattern (Table 8. f). The number of points in 
the point cloud decreases as the photo overlap percentage decreases or 
the distance between UAVs and the building facade increases (Table 8. 
a-c). Nevertheless, in contrast to the dimensional accuracy, the impact of 
changing the object distance is larger than changing photo overlap 
percentages when it comes to point cloud density. The decrease in point 
cloud density between a reconstructed scene from images taken at a 15- 

m distance (Table 8. a) and at a 30-m distance (Table 8. d) is much larger 
than the decrease of point cloud density between an as-built scene from 
80% photo overlap (Table 8. a) and from 60% photo overlap (Table 8. 
b). The low point cloud density of the circle pattern (taken at 40–50 m 
from the building facade) could also be an indicator of the significant 
impact the distance has on the point cloud density. For non-strip pat-
terns, larger distances are required so that the whole surface of a facade 
can be captured, which is also a reason for the drop in the point cloud 

Fig. 10. 3D as-built scenes (i.e., mesh models) reconstructed based on different flight paths (a. Strip Pattern (80% photo overlap), b. Strip Pattern (60% photo 
overlap), c. Strip Pattern (40% photo overlap), d. Strip Pattern (30 m), e. Polygon Pattern, f. Circle Pattern, g. Terrestrial Laser Scanner). 

Fig. 11. Dimension references of the case study building (Major Dimensions and Detail Dimensions) from a 3D model of the building - the dimensions reflect the 
actual as-built dimensions of the building. 
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Table 7 
Comparison of dimensional accuracy for different reconstructed scenes and their mesh models.  

Model All Dimensions Major Dimensions Detailed Dimensions 

Abs. Error (cm) Error Rate STD Abs. Error (cm) Error Rate STD Abs. Error (cm) Error Rate STD 

a (Strip – 80% -15) 6.15 0.72% 26.57 11.00 1.0% 34.06 1.27 0.45% 5.41 
b (Strip – 60% -15) 8.99 0.87% 36.75 15.24 0.68% 48.44 2.74 1.05% 5.16 
c (Strip – 40% -15) 17.65 1.48% 71.40 30.48 1.76% 85.85 2.29 1.13% 5.74 
d (Strip – 80% -30) 4.70 0.80% 13.08 7.62 0.95% 14.83 1.80 0.65% 5.03 
e (Polygon – 80%) 50.80 6.12% 165.28 84.25 6.08% 202.31 17.35 6.15% 43.08 
f (Circle – 80%) 14.53 3.07% 42.37 12.19 1.03% 17.27 17.48 5.63% 65.28 
g (Laser Scanner) 3.25 0.5% 4.05 6.00 0.9% 4.05 0.5 0.1% 1.22  

Fig. 12. Comparison of the error rates for different reconstructed scenes and their mesh models.  

Table 8 
Comparison of point cloud characteristics in different reconstructed scenes.  

Model Number of Points in the Whole Model Point Cloud Density (pts/m2) 

South Facade West Facade Top Surface Window Door 

a (Strip – 80% -15) 117,074,368 26,198 26,909 40,061 23,279 15,220 
b (Strip – 60% -15) 83,803,128 22,414 21,511 33,049 20,545 12,722 
c (Strip – 40% -15) 27,296,209 10,208 1262 12,522 8687 5083 
d (Strip – 80% -30) 51,037,110 8149 7797 12,641 7479 5820 
e (Polygon – 80%) 42,487,232 7264 6354 3153 6478 5456 
f (Circle – 80%) 12,338,180 473 521 693 642 318 
g (Laser Scanner) 50,024,868 19,758 5995 N/A 4810 8318  

Fig. 13. Comparison of point cloud density for selected surfaces across different reconstructed scenes.  
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density. 
The TLS-based point cloud (Table 8. g) did not include information 

on the building's top surface, resulting in a lower number of points. Also, 
the point cloud density was not the best TLS-based point cloud attribute 
given that we did not use the highest resolution and quality settings, due 
to the consideration of time efficiency, which will be further discussed in 
the next section. The differences in the point cloud quality are apparent 
in Fig. 14–16, which show comparisons of the South facade and the main 
entrance of the case study building. It can be seen from the figures that 
point cloud density is reflected in the quality of the mesh models and the 
level of detail. In Fig. 15 a, b, c, and Fig. 16, we can still see the incised 
building name and the basic frame of the building entrance door, while 
in Fig. 15 d, e, and f, this information is mostly lost. 

5.2.3. Time efficiency analysis 
We recorded the elapsed times for both data collection and data 

processing to analyze the time efficiency of the 3D scene reconstruction 
process. Table 9 presents the results, which show that the data pro-
cessing time accounts for a major portion of the overall processing time. 
While hardware characteristics such as differences in graphics process-
ing units (GPU) can also impact processing time, we focused solely on 
the impact of pre-flight design factors on time efficiency. The data 
processing was conducted on the same device with a Core i7 processor 
and 16 GB of RAM to avoid the impact of hardware differences. 

The results presented in Table 9 indicate that the total processing 
time for strip patterns is much higher than that for circle and polygon 
patterns. The model from the strip pattern with 40% photo overlap is an 
outlier case, as the model was not properly aligned in the 3D recon-
struction process. Generally, it can be observed that as the photo overlap 
decreases or the distance increases, the data processing time decreases. 
One of the major reasons for the difference is the number of photos that 
need to be aligned. The mesh model from the strip pattern with 80% 
photo overlap covers 240 photos in total, and the data processing time 
(49.8 h) is much longer than the data processing time of any of the other 
mesh models, which only cover 60–115 photos. In the case of terrestrial 
laser scanning, most of the time was spent on data collection. A single 
scan can take up to 2 h when using the highest resolution and quality 
settings. However, with 12 scanning stations and the practical re-
quirements in real-world scenarios, we used the FARO's predefined scan 
profile of “Outdoor HDR” that limited the time of each full scan to 15 
min. Compared with laser scanning, UAV-based data collection takes 
considerably less time to finish, but this may come at the cost of longer 

data processing time and reduced model performance, which will be 
discussed in the next section. 

5.2.4. Trade-off between as-built reconstructed scene quality and time 
efficiency 

The case study results suggest that the 3D scene reconstructed by 
images collected using the strip path pattern outperforms polygon and 
circle path patterns in terms of dimensional accuracy and point cloud 
density. However, better model performances also require more post- 
processing time because larger photo overlaps result in greater 
numbers of photos. Changing the distance between the UAV and the 
target building has a limited impact on the dimensional accuracy but a 
considerable effect on the point cloud density. On the contrary, the 
photo overlap percentage plays a crucial role in model performances. 
When the photo overlap was set to 40%, photos of some surfaces could 
not be properly aligned in this case study, and the 3D scene could not be 
properly formed. As the photo overlap percentage increases, it leads to 
higher dimensional accuracy and point cloud density, but this also re-
sults in an increase in total post-processing time. As such, there is a 
trade-off between the quality of the reconstructed scene (dimensional 
accuracy, point cloud density) and the time efficiency (total time) as 
illustrated in Fig. 17. 

As shown in Fig. 17, for photo overlap percentages below 60%, 
increasing the percentage considerably affects the quality of 3D recon-
structed scenes, with a relatively high variation rate for both dimen-
sional accuracy and point cloud density. The decrease in error rate and 
increase in point cloud density change dramatically when moving from 
40% to 60% overlaps. However, once the photo overlap percentage goes 
above 60%, the rate of improvement in the quality drops considerably. 
The photo overlap percentage of around 60% (50%–60%) acts as a 
watershed of allocative efficiency in this case study experiment. It is 
efficient to increase the photo overlap when it is under 60%, while the 
efficiency cost of processing will be higher than the benefits of model 
improvement when the overlap percentage is above 60%. Nevertheless, 
it is worth noting that the observed allocative efficiency point could be a 
feature of this case study. For generalization, more applied cases with 
different influential factors and various building types need to be 
investigated in future studies. 

5.2.5. Other influential factors 
In addition to the flight design factors discussed earlier, we identified 

two other factors that may affect the performance of UAV-based 3D 

Fig. 14. Point cloud of the South facade of the case study building (a. Strip Pattern (80% photo overlap), b. Strip Pattern (60% photo overlap), c. Strip Pattern (40% 
photo overlap), d. Strip Pattern (30 m), e. Polygon Pattern, f. Circle Pattern). 
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reconstruction in the case study trial tests. These factors are weather 
conditions during data collection and the collection of data from the 
intersection between two surfaces of the target building. Weather con-
ditions can considerably impact the quality of the collected data. Data 
collection on a sunny day can lead to data processing errors. The 
reflection of sunlight from glass surfaces, the shadows cast by the 

sunlight, and the illumination differences can be sources of errors. The 
influence of lighting and weather conditions on UAV photogrammetry 
has also been reported in previous literature, in which they also collect 
data during an overcast period to avoid the negative effect of the 
changing illumination [76]. Therefore, it is recommended to collect data 
on cloudy days with an overcast sky. Collecting data from the point of 
convergence between two distinct building surfaces, such as the south 
facade and the roof, can pose a challenge due to a misalignment. This 
misalignment can, in turn, lead to the failure of image matching during 
the data processing stage. To circumvent these challenges, it is recom-
mended to incorporate a strategic flight path plan that includes coverage 
of the interface regions where two surfaces meet. In the planning of the 
UAV's flight path, it is important to ensure that the UAV camera is ori-
ented at a 45-degree angle along each edge, thereby ensuring unob-
structed visibility of both adjoining building surfaces. Employing this 
approach in data collection can markedly mitigate the occurrence of 
image misalignment issues during data processing and thereby enhance 
the overall quality of the resulting 3D model. 

Fig. 15. Point cloud of the main entrance door of the case study building (a. Strip Pattern (80% photo overlap), b. Strip Pattern (60% photo overlap), c. Strip Pattern 
(40% photo overlap), d. Strip Pattern (30 m), e. Polygon Pattern, f. Circle Pattern). 

Fig. 16. Details of the terrestrial laser scanner-based Point cloud (Left: south façade; Right: main entrance door).  

Table 9 
Time elapsed for processing images to 3D reconstructed scenes and their mesh 
models.  

Model Data Collection (h) Data Processing (h) Total Time (h) 

a (Strip – 80% -15) 0.8 49.8 50.7 
b (Strip – 60% -15) 0.4 17.2 17.6 
c (Strip – 40% -15) 0.2 1.3 1.5 
d (Strip – 80% -30) 0.3 7.5 7.9 
e (Polygon – 80%) 0.2 3.3 3.5 
f (Circle – 80%) 0.2 2.3 2.4 
g (Laser Scanner) 3.5 1 4.5  
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6. Discussion 

6.1. Data Schema for building survey based on UAV-based 
photogrammetry 

As we evaluated the selected literature, it was observed that these 
studies did not uniformly specify the detailed information on influential 
factors as identified in this article. This could pose a challenge in syn-
thesizing the information across multiple studies to draw generalized 
conclusions. Accordingly, we propose a generalizable data schema that 
could be adopted in future studies and practices in the field of UAV- 
based photogrammetry. In this way, the findings in individual studies 
can be analyzed and compared across studies. We have presented the 
data requirements for such a schema in Table 10. If future researchers or 
industry practitioners include these data items in reporting their find-
ings, a larger-scale meta-analysis and comparative assessment of 
modeling performance could be facilitated, contributing to the devel-
opment of standardized procedures for UAV-based photogrammetry 
data collection and processing for buildings' as-built surveys. 

As shown in the proposed data schema, various factors can affect the 
UAV-based 3D as-built scene reconstruction, including survey target 
shapes and dimensions, data collection-related features, and data pro-
cessing methods. Different evaluation criteria and point cloud mea-
surements should also be considered. In previous studies, researchers 
attempted to achieve the optimal performance quality of the recon-
structed models in their case studies. However, different objectives and 
levels of detail for different applications may require different configu-
rations to improve time efficiency. While some studies have investigated 
the impact of specific factors on the model performance individually, 
few have investigated the collective effect of these factors. Although we 
conducted a case study to investigate the trade-off between different 
factors and reconstructed model quality, several limitations still exist 
that require further investigation in future studies. 

6.2. Limitations and future studies 

In this study, a detailed factor assessment was conducted through a 
systematic literature review and a case study field evaluation. While the 
outcome of this endeavor offers valuable insights, there are inherent 
limitations of the case study conducted in this research. First, our case 
study was restricted in scope, assessing a limited subset of influential 
factors with relatively modest variations. The selection of photo overlap 
percentages (40%, 60%, 80%) and the two selected fixed UAV-to- 
building distances (15 m and 30 m) presents an opportunity for more 

comprehensive and diversified experimentation. Given the computing- 
intensive nature of the analyses, it is challenging to compile an exten-
sive repository of sample data, encompassing diverse factor combina-
tions, distinct building typologies, and a broad array of architectural 
forms. Deploying cloud computing resources, a future avenue of 
research could involve a broader spectrum of factors, including addi-
tional photo overlap percentages, broader variations in the number of 
photos, investigated distances, altitudes, and ground control points 
(GCPs), as well as comparisons between different processing software 
solutions, and utilized hardware specifications. Additionally, the inclu-
sion of various building types, sizes, and real-world applications can 
help expand the foundation developed in this study. 

Furthermore, while terrestrial laser scanning served as the ground 
truth data source for comparison in this study, comparison against 
alternative means of data collection, such as terrestrial robots (e.g., agile 
mobile robots [39]), remains to be explored [96]. Future investigations 
may encompass a more extensive examination of the disparities between 
3D as-built reconstructions derived from UAV-based photos and those 
gathered by alternative data collection methods, such as alternative 
ground-based methods. Future studies should also examine the syner-
gistic potential of integrating UAV and terrestrial photogrammetry or 
laser scanning data to enhance model accuracy [41,74,90]. Empirical 
studies have proposed frameworks for operating mobile robots equipped 
with laser scanning systems in cluttered outdoor environments with the 
aid of UAVs [40,69], and developed methods to automatically register 
the 3D point clouds collected both from UAVs and tresterial robots [68]. 
Such integrated approaches hold promise in pushing the boundaries of 
precision in building surveys and construction analysis. 

7. Conclusion 

The practices of UAV-based as-built scene reconstruction have ach-
ieved significant advancements, primarily focusing on optimizing the 
quality of image-based 3D reconstructed scenes. However, in the liter-
ature, there exists a gap in the systematic identification and analysis of 
critical factors in UAV-based photogrammetry that could have a signif-
icant impact on performance. Therefore, in this study, we presented a 
comprehensive factor assessment using a systematic literature review, 
through which a categorization of relevant parameters was developed 
for the three phases of scene reconstruction: (1) flight design for data 
collection, (2) data processing, and (3) performance evaluation. 
Through social network analysis and frequency assessment in the 
selected literature, we identified the most influential factors to be flight 
path patterns, the distance between the UAV and the target building, 

Fig. 17. Comparison of the 3D model reconstruction performance for different photo overlap percentage using strip pattern for flight path: a. Dimensional accuracy 
vs. Total time, b. Point cloud density vs. Total time). 
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and photo overlap percentages. Subsequently, we conducted an in-depth 
case study to quantitively analyze the trade-off between these factors 
and their impact on the quality of the reconstructed scenes. Performance 
evaluations revealed that the strip pattern flight path results in higher- 
quality point clouds when compared to polygon and circle patterns. 
The distance between the UAV and the target building has a more pro-
found influence on point cloud density compared to the dimensional 
accuracy. Among all factors examined, photo overlap percentages 
emerged as the primary driver of 3D scene reconstruction performance. 
We identified a trade-off between the point cloud quality and time ef-
ficiency, where a photo overlap percentage of about 60% can be the 
tipping point of allocative efficiency in the case study experiment. For 
detailed building elements, a strip pattern with a close-range (about 15 
m) data collection process resulted in high point cloud density and 

dimensional accuracy. The comparisons between UAV-based models 
and terrestrial laser scanner-based models revealed that UAV-based 
photogrammetry (using a strip pattern with 80% photo overlap) can 
considerably reduce data collection time while achieving equivalent 
model quality compared to laser scanning. 

This study contributes by systematically identifying and quantita-
tively analyzing factors and metrics in UAV-based photogrammetry, 
expanding practical knowledge for as-built building surveys. The find-
ings could offer guidance for efficient and precise as-built building 
surveys with standardized procedures, which in turn could benefit in-
dustry practices and future research in this area. Moreover, future 
studies can leverage the presented categorization and suggested data 
requirement schema to move towards standardized procedures that 
could balance the trade-off between data collection and processing ef-
forts and the reconstructed scene quality. Additionally, the findings 
could contribute to the automation (with pre-set factors and survey 
objectives) of larger-scale UAV-based photogrammetry workflows that 
could in turn support the creation of digital twins at different scales. 
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